17 research outputs found

    Reconfigurable radar transmitter based on photonic microwave signal generation

    Get PDF
    In this paper we propose a photonic technique for a reconfigurable microwave signal generation based on the beating in a photodiode of two laser modes from a regenerative Fiber Mode-Locked Laser (FMLL). The excellent performance of this kind of pulsed laser guarantees high stability to the generated microwave signal even at ultra high frequencies (up to W band). Therefore, by using the proposed architecture, the performance of a reconfigurable full digital coherent radar system can be enhanced in terms of Moving Target Indicator (MTI) improvement factor. Moreover, thanks to the achievable high repetition rates and the coherence properties of the FMLL, this laser scheme has also been proposed for digitizing the received signal by electro-optical sampling. Thus the advantage of using just one device for signal generation in both the transmitter and receiver chain, makes the proposed solution a cost effective architecture for microwave signal generation. Differently from the microwave synthesizers, whose performance strongly deteriorate with increasing frequencies, the photonic radio frequency generation always shows an excellent spectral purity. The results show excellent spectral purity above 5 KHz for the proposed technique compared to a state of the art Agilent synthesizer even though the timing jitter increases for integration time greater than 10 msec. In order to achieve the same stability performance at both high and low frequencies a Phase Locked Loop between the laser and a synthesizer could be used

    CLEAN technique for polarimetric ISAR

    Get PDF
    Inverse synthetic aperture radar (ISAR) images are often used for classifying and recognising targets. To reduce the amount of data processed by the classifier, scattering centres are extracted from the ISAR image and used for classifying and recognising targets. This paper addresses the problem of estimating the position and the scattering vector of target scattering centres from polarimetric ISAR images. The proposed technique is obtained by extending the CLEAN technique, which was introduced in radar imaging for extracting scattering centres from single-polarisation ISAR images. The effectiveness of the proposed algorithm, namely, the Polarimetric CLEAN (Pol-CLEAN) is tested on simulated and real dataM. Martorella, A. Cacciamano, E. Giusti, F. Berizzi, B. Haywood, and B. Bate

    A Contrast Based Algorithm For Synthetic Range Profile Motion Compensation

    No full text
    In stepped-frequency radar, target motions produce range-profile distortions. Range shift, signal-to-noise ratio loss, and symmetric spreading are produced by target radial velocity, whereas target radial acceleration is mainly responsible for asymmetric smearing. Acceleration-distortion effects are usually negligible when a high Pulse Repetition Frequency (PRF) is used, although this is not the case for low-PRF radars. In this paper, a new motion-compensation technique based on contrast optimization is proposed. The innovative contributions of this paper are as follows: (1) A theoretical analysis of the distortions produced by target motions on the reconstruction of synthetic aperture radar is provided; (2) the proposed technique compensates both phase terms, which are due to target radial velocity and acceleration; therefore, synthetic range profiles can be focused by processing low-PRF radar returns; (3) a new cost function for the synthetic range profiles (namely, contrast) is defined and used for motion compensation; (4) the proposed technique can be applied to any kind of stepped-frequency waveforms; and (5) an estimation error analysis is performed, first theoretically and then by means of both simulations and real data

    Contrast-Optimization-Based Range-Profile Autofocus for Polarimetric Stepped-Frequency Radar

    No full text
    One of the main benefits brought by the use of fully polarimetric radars is the ability to identify scattering mechanisms, which are related to the target physical properties. One of the most critical problems in synthetic range-profile reconstruction is the distortion induced by the target motion. Radial target velocity and acceleration generate second-and third-order phase terms in the received signal, which produce range shift and point-spread- function smearing. The distortions induced by the target motion produce, as a consequence, a signal-to-noise ratio loss. Recently, a method based on contrast maximization has been proposed in order to compensate target radial motions using single-polarization data. In this paper, an extension of such an algorithm is proposed that exploits fully polarimetric data in order to improve the target radial motion compensation. © 2009 IEEE
    corecore